Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

A novel three-dimensional copper(II) coordination polymer with 1,4-bis-(1,2,4-triazol-1-ylmethyl)benzene and thiocyanate

Yan-Fen Peng, Xun-Gao Liu, Bao-Zong Li, Bao-Long Li ${ }^{*}$ and Yong Zhang

College of Chemistry and Chemical Engineering, Key Laboratory of Organic Synthesis of Jiangsu Province, Suzhou University, Suzhou 215006, People's Republic of China Correspondence e-mail: blli1965@pub.sz.jsinfo.net

Received 8 October 2004
Accepted 19 May 2005
Online 22 June 2005
In the title complex, poly[copper(II)-di- μ_{2}-thiocyanato-μ_{2}-1,4-bis(1,2,4-triazol-1-ylmethyl)benzene], $\left[\mathrm{Cu}(\mathrm{NCS})_{2}{ }^{-}\right.$ $\left.\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{6}\right)\right]_{n}$, the $\mathrm{Cu}^{\text {II }}$ atom lies on an inversion centre in a tetragonally distorted octahedral environment. Four N atoms from thiocyanate and 1,4-bis(1,2,4-triazol-1-ylmethyl)benzene (bbtz) ligands fill the equatorial positions, and S atoms from symmetry-related thiocyanate ligands fill the axial positions. The benzene ring of the bbtz ligand lies about an inversion centre. Single thiocyanate bridges link the $\mathrm{Cu}^{\mathrm{II}}$ atoms into two-dimensional sheets containing an unprecedented 16membered $\left[\mathrm{Cu}_{4}(\mu \text {-NCS- } N: S)_{4}\right]$ ring. The bbtz ligands further link the two-dimensional sheets into a three-dimensional network.

Comment

The design and construction of coordination polymers is of great interest because of their intriguing structural topologies and potential applications as functional materials (Yaghi et al., 1998; Batten \& Robson, 1998; Moulton \& Zaworotko, 2001). The design of coordination polymers requires appropriate components, such as suitable bridging ligands, to link metal centres. The pseudohalide thiocyanate has been demonstrated to be an extremely versatile ligand, which can provide $\mu-\mathrm{NCS}^{-}-N: S, \mu-\mathrm{NCS}^{-}-N: N$, terminal N -bonded NCS^{-}or terminal S-bonded NCS ${ }^{-}$modes (Zhang et al., 1999). Many doubly thiocyanate-bridged copper(II) complexes have been characterized (Zhang et al., 1999; Bie et al., 2003). However, singly thiocyanate-bridged copper(II) compounds are relatively rare (Ribas et al., 1995; Karan et al., 2002).

The most widely used ligands for construction of coordination polymers are rigid rod-like N -atom donor organic ligands, and a variety of topological architectures have been synthesized (Fujita et al., 1994; Li et al., 2001). However, flexible ligands containing triazole or imidazole have not been
well studied to date (Effendy et al., 2004; Van Albada et al., 2000; Shen et al., 1999). In previous studies, we synthesized several coordination polymers with the flexible ligands 1,2-bis(1,2,4-triazol-1-yl)ethane (bte; Li et al., 1999, 2003; Zhu et al., 2004; Zhou et al., 2004), 1,2-bis(imidazol-1-yl)ethane (bim; B.-L. Li et al., 2004) and 1,4-bis(1,2,4-triazol-1-ylmethyl)benzene (bbtz; Peng et al., 2004; B.-Z. Li et al., 2004). In the present paper, we report the preparation and crystal structure of a three-dimensional coordination polymer, $\left[\mathrm{Cu}(\mathrm{NCS})_{2^{-}}\right.$ (bbtz) $]_{n}$, (I), which contains novel 16 -membered $\left[\mathrm{Cu}_{4}(\mu-\mathrm{SCN}-\right.$ $N: S)_{4}$] rings.

(I)

As shown in Fig. 1, the $\mathrm{Cu}^{\mathrm{II}}$ atom lies on an inversion centre, in a tetragonally distorted octahedral environment, coordinated by four N atoms from symmetry-related thiocyanate and bis-monodentate bbtz ligands in the equatorial positions, and two S atoms from symmetry-related thiocyanate ligands in the axial positions. This coordination environment is similar to that in $\left[\mathrm{Cu}(\mathrm{NCS})_{2}(4 \text {-picoline })_{2}\right]_{n} \quad[$ Cambridge Structural Database (CSD; Allen, 2002) refcode DUPFOJ10 (Koziskova et al., 1990) $],\left[\mathrm{Cu}(\mathrm{NCS})_{2}(\text { imidazole })_{2}\right]_{n}$ (Bie et al., 2003) and $\left[\mathrm{Cu}(\mathrm{NCS})_{2}(4 \text {-cyanopyridine })_{2}\right]_{n}$ (Li et al., 2002). The $\mathrm{Cu}-$ $\mathrm{N}_{\mathrm{bbtz}}$ bond lengths are 2.0074 (15) \AA (Table 1), longer than the $\mathrm{Cu}-\mathrm{N}_{\mathrm{NCS}}-$ bond lengths $[1.9700(15) \AA$] and similar to the $\mathrm{Cu}-\mathrm{N}$ bond lengths in the three cited compounds. The NCS^{-} ion acts as a bridging ligand in a $\mu-N: S$ mode in (I), as in the three cited compounds. In (I), however, single thiocyanate bridges link two $\mathrm{Cu}^{\mathrm{II}}$ atoms, while double thiocyanate bridges connect two $\mathrm{Cu}^{\text {II }}$ atoms in the cited compounds. The $\mathrm{Cu}-\mathrm{S}$ bond length in (I) is 2.9163 (6) \AA, shorter than the sum of the van der Waals radii of the Cu and S atoms ($3.4 \AA$) and similar to the values 2.968 (4)-3.258 (4) \AA in $\left[\mathrm{Cu}(\mathrm{NCS})_{2}(4\right.$-picoline $\left.)_{2}\right]_{n}, 3.14(5) \AA$ in $\left[\mathrm{Cu}(\mathrm{NCS})_{2}(\text { imidazole })_{2}\right]_{n}, 2.950$ (4) and 2.996 (4) \AA in $\left[\mathrm{Cu}(\mathrm{NCS})_{2}(4 \text {-cyanopyridine })_{2}\right]_{n}$, and 3.021 (3) and 3.038 (3) \AA in $\left[\mathrm{Cu}(\mathrm{NCS})_{2}\left(2,2^{\prime}\right.\right.$-bipyridine) $]$ (CSD refcode FAZQOM; Ferlay et al., 1999), in which the S atoms adopt the axial positions in a similarly distorted octahedron around the $\mathrm{Cu}^{\text {II }}$ atom. In $\mathrm{Cu}^{\text {II }}$ complexes, N-bonded thiocyanate groups mostly appear in equatorial positions, while the S-bonded

Figure 1
A view of the local coordination of the $\mathrm{Cu}^{\text {II }}$ atom in (I), with displacement ellipsoids drawn at the 50% probability level. Only the atoms of the asymmetric unit have been labelled.

Figure 2
A perspective view of the two-dimensional sheet in (I) (see Comment). Only the Cu and thiocyanate atoms are shown for clarity.
groups are observed in the axial directions. The $\mathrm{Cu}-\mathrm{N}-\mathrm{C}_{\mathrm{NCS}}$ bond angle in (I) is $166.68(16)^{\circ}$, in good agreement with the values in singly thiocyanate-bridged copper(II) complexes, viz. 163.6 (8) and $169.0(7)^{\circ}$ in $\left[\mathrm{Cu}(\mathrm{NCS})_{2}\left(2,2^{\prime}\right.\right.$-bipyridine) $]$ (FAZQOM), 167.4 (14) and $169.1(13)^{\circ}$ in $\left[\mathrm{Cu}(\mathrm{NCS})_{2}(\text { dach })\right]_{n}$ (dach is 1,4-diazacycloheptane; Karan et al., 2002), and $155.6(5)^{\circ}$ in $\left[\left\{\mathrm{Cu}_{2}(\text { tmen })_{2} \mathrm{NCS}[\mu-\mathrm{Cu}(\mathrm{pba})]\right\}(\mu-\mathrm{SCN})\right]_{n} \cdot 3 n \mathrm{H}_{2} \mathrm{O}$ $\{\mathrm{Cu}(\mathrm{pba})$ is [1,3-propanediylbis(oxamato)]cuprate(II) and tmen is $N, N, N^{\prime}, N^{\prime}$-tetramethylenediamine; Ribas et al., 1995\}. The $\mathrm{Cu}-\mathrm{S}-\mathrm{C}_{\mathrm{SCN}}$ bond angle is 100.67 (6) ${ }^{\circ}$, comparable to the values of 97.9 (3), 90.3 (5) and 112.31 (7) ${ }^{\circ}$ in the last three cited compounds. The thiocyanate ligand is normal.

Figure 3
The three-dimensional network in (I) (see Comment). S, N and Cu atoms are fully hatched, partially hatched and not hatched, respectively. H atoms have been omitted for clarity.

Each NCS^{-}anion in (I) coordinates to two $\mathrm{Cu}^{\mathrm{II}}$ atoms in a μ-NCS- $N: S$ mode, and single thiocyanate bridges link the $\mathrm{Cu}^{\text {II }}$ centres into a two-dimensional sheet, resulting in an 'hour-glass-shaped' 16 -membered $\left[\mathrm{Cu}_{4}(\mu \text {-NCS- } N: S)_{4}\right]$ metallocycle (Fig. 2). To the best of our knowledge, such an arrangement of the metallocycle is unprecedented in copper-thiocyanate systems. Three similar structures with the $\left[M_{4}(\mu-\mathrm{NCS}-N: S)_{4}\right]$ subunit have been reported for three transition metal complexes, viz. $\left[\mathrm{Mn}_{4}(\mu \text {-NCS- } N: S)_{4}\right]$ in $\left[\mathrm{Mn}(\mathrm{NCS})_{2}(\mathrm{EtOH})_{2}\right]$ (McElearney et al., 1979), and $\left[\mathrm{Cd}_{4}(\mu-\mathrm{NCS}-\mathrm{N}: S)_{4}\right]$ in $[\mathrm{Cd}-$ $\left.(\mathrm{NCS})_{2}(\text { nicotinamide })_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ and $\left[\mathrm{Cd}(\mathrm{NCS})_{2}\right.$ (isonicotinamide) ${ }_{2}$] (Yang et al., 2001). The $\mathrm{Cu} \cdots \mathrm{Cu}$ separation through the NCS^{-}ligand is 6.0783 (6) \AA in (I), compared with values ranging from 5.27 (2) \AA in the singly thiocyanate-bridged copper(II) complex $\left[\mathrm{Cu}(\mathrm{NCS})_{2}(\text { dach })\right]_{n}$ to $6.113 \AA$ in the doubly thiocyanate-bridged copper(II) complex $\left[\mathrm{Cu}(\mathrm{NCS})_{2^{-}}\right.$ (2,2'-bipyridine)] (Diaz et al., 1999).

Because the methyl C atoms of bbtz can rotate freely to adjust to the coordination environment, bbtz can exhibit trans-gauche and gauche-gauche conformations, similar to the ligand 1,4-bis(imidazol-1-ylmethyl)benzene (bix), as shown in the polyrotaxane $\left[\mathrm{Ag}_{2}(\text { bix })_{3}\right]\left(\mathrm{NO}_{3}\right)_{2}$ (Hoskins et al., 1997b). The bbtz ligands exhibit the trans-gauche conformation in (I), similar to the situation in the free bbtz molecule (Peng et al., 2004) and the bridging bbtz ligand in $\left[\mathrm{Co}\left(\mathrm{N}_{3}\right)_{2}(\mathrm{bbtz})_{2}\right]_{n}$, (II) (B.-Z. Li et al., 2004). The three rings (two triazole rings and one benzene ring) of one bbtz ligand are not coplanar in (I), (II) or the free bbtz molecule. However, the dihedral angle between the two triazole planes is 0° by imposed crystallographic symmetry in (I) and in the free bbtz molecule, compared with 61.94 (19) ${ }^{\circ}$ in (II). The dihedral angle between the benzene and triazole planes in (I) is $70.51(7)^{\circ}$, similar to the value in the free bbtz molecule [77.81 (9) ${ }^{\circ}$] and those in (II) [67.26 (9) and 66.96 (7) ${ }^{\circ}$.

As illustrated in Fig. 3, each bbtz ligand in (I) coordinates to $\mathrm{Cu}^{\text {II }}$ atoms through its two triazole N atoms, thus acting as a bridging bidentate ligand to further link the $[\mathrm{Cu}(\mu-\mathrm{NCS}-$ $\left.N: S)_{2}\right]_{n}$ sheets into a three-dimensional network. A 34membered ring is formed through four Cu atoms linked by two single μ-NCS- $N: S$ bridges and two bbtz ligands. The $\mathrm{Cu} \cdots \mathrm{Cu}$ distance is 13.2178 (13) \AA through the bridging bbtz ligand, similar to the corresponding metal-metal separations in (II) $[14.4156(18) \AA]$ and the related bix complexes $\left[\mathrm{Zn}(\mathrm{bix})_{2}\left(\mathrm{NO}_{3}\right)_{2}\right] \cdot 4.5 \mathrm{H}_{2} \mathrm{O}[15.037$ (2) \AA; Hoskins et al., 1997a], $\left[\mathrm{Ag}_{2}(\text { bix })_{3}\left(\mathrm{NO}_{3}\right)_{2}\right][14.626$ (2) Å; Hoskins et al., 1997b] and $\left[\mathrm{Mn}(\mathrm{bix})_{3}\left(\mathrm{NO}_{2}\right)_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}(12.659 \AA$ A ; Shen et al., 1999). By way of comparison, two-dimensional sheets of $\left[\mathrm{Mn}_{4}(\mu\right.$-NCS$\left.N: S)_{4}\right]_{n}$ are separated by ethanol groups in $\left[\mathrm{Mn}(\mathrm{NCS})_{2^{-}}\right.$ $(\mathrm{EtOH})_{2}$] (McElearney et al., 1979), and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ amide hydrogen bonds between two-dimensional $\left[\mathrm{Cd}_{4}(\mu-\mathrm{NCS}\right.$ $\left.N: S)_{4}\right]_{n}$ sheets extend the two-dimensional networks to threedimensional structures in $\left[\mathrm{Cd}(\mathrm{NCS})_{2}(\text { nicotinamide })_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ and $\left[\mathrm{Cd}(\mathrm{NCS})_{2}(\text { isonicotinamide })_{2}\right]$ (Yang et al., 2001).

Experimental

A water-methanol solution $(20 \mathrm{ml}, 1: 1 \mathrm{v} / \mathrm{v})$ of bbtz $(0.120 \mathrm{~g}$, $0.50 \mathrm{mmol})$ and $\mathrm{KNCS}(0.194 \mathrm{~g}, 2.0 \mathrm{mmol})$ was added to one leg of a H-shaped tube, and a water-methanol solution ($20 \mathrm{ml}, 1: 1 \mathrm{v} / \mathrm{v}$) of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(0.150 \mathrm{~g}, 0.6 \mathrm{mmol})$ was added to the other leg of the tube. Well-shaped green crystals suitable for X-ray analysis were obtained after about two months. The product is stable in an ambient atmosphere and insoluble in most common inorganic and organic solvents. Analysis found: C 39.92, H 2.83 , N 26.57%; calculated for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{CuN}_{8} \mathrm{~S}_{2}$: C 40.04, H 2.88, N 26.69\%.

Crystal data

```
\(\left[\mathrm{Cu}(\mathrm{NCS})_{2}\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{6}\right)\right]\)
\(M_{r}=420.01\)
Monoclinic, \(C 2 / c\)
\(a=23.005\) (3) \(\AA\) 。
\(b=9.2208\) (12) \(\AA\)
\(c=7.9222(11) \AA\)
\(\beta=103.200(3)^{\circ}\)
\(c=7.9222(11) \mathrm{A}\)
\(\beta=103.200(3)^{\circ}\)
\(\beta=103.200(3)^{\circ}{ }^{\circ}\)
\(V=1636.1(4){ }^{3}\)
\(Z=4\)
\(D_{x}=1.705 \mathrm{Mg} \mathrm{m}^{-3}\)
Mo \(K \alpha\) radiation
Cell parameters from 3412
    reflections
\(\theta=3.4-27.5^{\circ}\)
\(\mu=1.61 \mathrm{~mm}^{-1}\)
```

Mo $K \alpha$ radiation
Cell parameters from 3412
$\theta=3.4-27.5^{\circ}$
$\mu=1.61 \mathrm{~mm}^{-1}$
$T=193.2 \mathrm{~K}$
Block, green
$0.40 \times 0.32 \times 0.09 \mathrm{~mm}$

Data collection
Rigaku Mercury CCD
diffractometer
ω scans
Absorption correction: multi-scan
(North et al., 1968)
$T_{\text {min }}=0.566, T_{\text {max }}=0.869$
8843 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0446 P)^{2}\right. \\
& +1.4357 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \text {. } \\
& \Delta \rho_{\text {max }}=0.39 \mathrm{e}^{-3} \\
& \Delta \rho_{\text {min }}=-0.38 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.079$
$S=1.07$
1870 reflections
116 parameters
H -atom parameters constrained

1870 independent reflections 1784 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-29 \rightarrow 27$
$k=-11 \rightarrow 11$
$l=-10 \rightarrow 10$

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{N} 4$	$1.9700(15)$	$\mathrm{N} 1-\mathrm{C} 3$	$1.476(2)$
$\mathrm{Cu} 1-\mathrm{N} 3$	$2.0074(15)$	$\mathrm{N} 2-\mathrm{C} 1$	$1.316(3)$
$\mathrm{Cu} 1-\mathrm{S} 1^{\mathrm{i}}$	$2.9163(6)$	$\mathrm{N} 3-\mathrm{C} 2$	$1.326(2)$
$\mathrm{S} 1-\mathrm{C} 7$	$1.6317(18)$	$\mathrm{N} 4-\mathrm{C} 7$	$1.156(2)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.360(2)$		
$\mathrm{N} 4-\mathrm{Cu} 1-\mathrm{N} 3$	$89.79(6)$	$\mathrm{C} 7-\mathrm{N} 4-\mathrm{Cu} 1$	$166.68(16)$
$\mathrm{N} 4-\mathrm{Cu} 1-\mathrm{S} 1^{\mathrm{i}}$	$87.99(5)$	$\mathrm{N} 4-\mathrm{C} 7-\mathrm{S} 1$	$178.95(18)$
$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{S} 1^{\mathrm{i}}$	$89.37(4)$		

Symmetry code: (i) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2}$.

H atoms were placed in idealized positions and refined as riding, with $\mathrm{C}-\mathrm{H}$ distances of 0.95 (triazole and benzene) and $0.99 \AA$ (methane), and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. Two reflections ($\overline{6} 02$ and $\overline{4} 02$) were excluded by the image processing software.

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

This work was supported by the Natural Science Foundation of the University of Jiangsu Province (grant No. 03 KJB150118) and the Fund of the Key Laboratory of Organic Synthesis of Jiangsu Province, People's Republic of China.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GA1092). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Batten, S. R. \& Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.
Bie, H. Y., Yu, J. H., Xu, J. Q., Lu, J., Li, Y., Cui, X. B., Zhang, X., Sun, Y. H. \& Pan, L. Y. (2003). J. Mol. Struct. 660, 107-112.
Bruker (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Diaz, C., Ribas, J., Sanz, N., Solans, X. \& Font-Bardia, M. (1999). Inorg. Chim. Acta, 286, 169-174.
Effendy, Marchetti, F., Pettinari, C., Pettinari, R., Ricciutelli, M., Skelton, B. R. \& White, A. H. (2004). Inorg. Chem. 43, 2157-2165.
Ferlay, S., Francese, G., Schmalle, H. W. \& Decurtins, S. (1999). Inorg. Chim. Acta, 286, 108-113.

metal-organic compounds

Fujita, M., Kwon, Y. J., Washizu, S. \& Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151-1152.
Hoskins, B. F., Robson, R. \& Slizys, D. (1997a). Angew. Chem. Int. Ed. Engl. 36, 2336-2338.
Hoskins, B. F., Robson, R. \& Slizys, D. (1997b). J. Am. Chem. Soc. 119, 29522953.

Karan, N. M., Mitra, S., Matsushita, T., Gramlich, V. \& Rosair, G. (2002). Inorg. Chim. Acta, 332, 87-91.
Koziskova, Z., Kozisek, J. \& Kabesova, M. (1990). Polyhedron, 9, 1029-1034.
Li, B., Zhou, J., Duan, C., Liu, Y., Wei, X. \& Xu, Z. (1999). Acta Cryst. C55, 165-167.
Li, B.-L., Li, B.-Z., Zhu, X., Zhu, L.-M. \& Zhang, Y. (2003). Acta Cryst. C59, m350-m351.
Li, B. L., Yin, G., Cao, H. Q., Liu, Y. J. \& Xu, Z. (2001). Inorg. Chem. Commun. 4, 451-453.
Li, B.-L., Zhu, X., Zhou, J.-H. \& Zhang, Y. (2004). Acta Cryst. C60, m373m374.
Li, B.-Z., Peng, Y.-F., Zhang, Y.-P., Li, B.-L. \& Zhang, Y. (2004). Acta Cryst. C60, m560-m562.
Li, X. Y., Wang, P., Wang, Z. M., Yan, C. H., Zhang, L. D. \& Guo, H. Y. (2002). Chin. J. Chem. 20, 142-146.
McElearney, J. N., Balagot, L. L., Muir, J. A. \& Spence, R. D. (1979). Phys. Rev. B: Condens. Matter, 19, 306-317.
Moulton, B. \& Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Peng, Y. F., Li, B. Z., Zhou, J. H., Li, B. L. \& Zhang, Y. (2004). Chin. J. Struct. Chem. 23, 985-988.
Ribas, J., Diaz, C., Solans, X. \& Font-Bardia, M. (1995). Inorg. Chim. Acta, 231, 229-232.
Rigaku (2000). CrystalClear. Version 1.3. Rigaku Corporation, 3-9-12 Akishima, Tokyo, Japan.
Sheldrick, G. M. (1997) SHELXS97 and SHELXL97. University of Göttingen, Germany.
Shen, H. Y., Liao, D. Z., Jiang, Z. H., Yan, S. P., Wang, G. L., Yao, X. K. \& Wang, H. G. (1999). Acta Chem. Scand. 53, 387-390.
Van Albada, G. A., Guijt, R. C., Haasnoot, J. G., Lutz, M., Spek, A. L. \& Reedijk, J. (2000). Eur. J. Inorg. Chem. pp. 121-126.
Yaghi, O. M., Li, H., Davis, C., Richardson, D. \& Groy, T. L. (1998). Acc. Chem. Res. 31, 474-484.
Yang, G., Zhu, H. G., Liang, B. H. \& Chen, X. M. (2001). J. Chem. Soc. Dalton Trans. pp. 580-585.
Zhang, H., Wang, X. M., Zhang, K. C. \& Teo, B. K. (1999). Coord. Chem. Rev. 183, 157-195.
Zhou, J. H., Zhu, X., Zhang, Y. N., Zhang, Y. \& Li, B. L. (2004). Inorg. Chem. Comтип. 7, 949-952.
Zhu, X., Li, B.-Z., Zhou, J.-H., Li, B.-L. \& Zhang, Y. (2004). Acta Cryst. C60, m191-m193.

